

Analytical Chemists

November 22, 2019

Abercrombie 2125 Refugio Rd Goleta, CA 913117 Lab ID : SP 1914842 Customer : 2-25624

Laboratory Report

Introduction: This report package contains total of 8 pages divided into 4 sections:

Case Narrative (2 pages): An overview of the work performed at FGL.

Sample Results (1 page): Results for each sample submitted.

Interpretation (1 page): Drinking Water Interpretation for each sample submitted.

Quality Control (4 pages): Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix
2125 Refugio Well Head	10/31/2019	10/31/2019	SP 1914842-002	DW

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
SP 1914842-002	MBAS (foaming agents)	48	149.78 Hours
SP 1914842-002	Nitrate + Nitrite as N	48	434.9 Hours
SP 1914842-002	Nitrate as NO3	48	434.9 Hours
SP 1914842-002	Nitrate Nitrogen	48	434.9 Hours
SP 1914842-002	Nitrite as N	48	434.9 Hours
SP 1914842-002	pH	15	29370 Minutes

All samples arrived on ice. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals OC

200.7	11/09/2019:217683 All analysis quality controls are within established criteria.
	11/16/2019:217966 All analysis quality controls are within established criteria.

November 15, 2019

SP 1914842:1,2 Coliform Bacteria Analysis

Customer ID

: 2025624

Abercrombie 2125 Refugio Rd

System Number: N/A

Goleta, CA 913117

Project Name : Tajiguas Ranch

Analytical Results

\mathbf{D}	Sample Description	Total	Fecal	E. Coli	Units	Method	Prep	Footnote
1	2125 Refugio House Water	<1.0 Absent		<1.0 Absent	MPN/100ml	SM 9223B	Quanti Tray 18	
2	2125 Refugio Well Head	11.1 Present		<1.0 Absent	MPN/100ml	SM 9223B	Quanti Tray 18	

N/R Not Required

MPN Most Probable Number

A/P Absence/Presence

The sample(s) listed below failed drinking water standards for Total and/or Fecal Coliform and/or E. Coli as listed: SP 1914842-002 2125 Refugio Well Head: Total Coliform - Failure

Sample Handling Information

ID	Sample Number	System Number	Sample Type/Reason	Sampler	Employed By	Sampled
1	SP 1914842-001	N/A	System-Other	Stewart Abercrombie	Abercrombie	2019-10-31 12:00
2	SP 1914842-002	N/A	Source-Other	Stewart Abercrombie	Abercrombie	2019-10-31 12:00

Field Analysis/QA Information

ID	Sample Description	Cl Total/Free mg/l	Temp	Analysis Started	Analysis Completed	Contact	Contacted
1	2125 Refugio House Water	/		2019-10-31 15:19 lm	2019-11-01 11:59 lkb	Stewart Abercrombie	2019-11-04 11:37
2	2125 Refugio Well Head	/		2019-10-31 15:19 lm	2019-11-01 11:59 lkb	Stewart Abercrombie	2019-11-04 11:37

Analyses were performed at the FGL Santa Paula Laboratory using Standard Methods 20th edition. If you have any questions regarding your results, please call. The FGL Santa Paula Laboratory is certified by California ELAP #1573 and accredited to ISO/IEC 17025:2005 by PJLA certificate #75605, Testing.

Prepared By: SMH

Reviewed and Approved By Raquel R. Harvey Digitally signed by Raquel R. Harvey Digitally signed by Raquel R. Harvey Date: 2019-11-18

Page 1 of November 22, 2019 **Abercrombie**

Lab ID

: SP 1914842

Customer

: 2-25624

Inorganic - Metals QC

	11/09/2019:212926 All preparation quality controls are within established criteria, except:
200.7	The following note applies to Calcium, Magnesium:
	435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

Inorganic - Wet Chemistry QC

2320B	11/13/2019:217834 All analysis quality controls are within established criteria.						
	11/13/2019:213104 All preparation quality controls are within established criteria.						
2510B	11/12/2019:217729 All analysis quality controls are within established criteria.						
	11/12/2019:213033 All preparation quality controls are within established criteria.						
2540CE	11/04/2019:212683 All preparation quality controls are within established criteria.						
300.0	11/18/2019:218147 All analysis quality controls are within established criteria.						
	11/18/2019:213363 All preparation quality controls are within established criteria, except: The following note applies to Chloride: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.						
4500-H B	11/20/2019:213446 All preparation quality controls are within established criteria.						
4500HB	11/20/2019:218255 All analysis quality controls are within established criteria.						
5540C	11/06/2019:218028 All analysis quality controls are within established criteria.						
	11/06/2019:213302 All preparation quality controls are within established criteria.						

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Digitally signed by Kelly A. Dumrahoo, B S. Title: Laboratory Director Date. 2019-11-22

Lab ID : SP 1914842-002

Customer ID : 2-25624

Abercrombie 2125 Refugio Rd Goleta, CA 913117

November 22, 2019

Sampled On : October 31, 2019-12:00 Sampled By : Stewart Abercrombie Received On : October 31, 2019-14:40

Matrix : Drinking Water

Description : 2125 Refugio Well Head

Project : Tajiguas Ranch

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	l Count		Omto	MOETIE	Method	Date/ID	Method	Date/ID
General Mineral								
Total Hardness as CaCO3	82.9		mg/L		200.7	11/09/19:212926	200.7	11/09/19:217683
Calcium	25	1	mg/L		200.7	11/09/19:212926	200.7	11/09/19:217683
Magnesium	5	1	mg/L		200.7	11/09/19:212926	200.7	11/09/19:217683
Potassium	1	1	mg/L		200.7	11/09/19:212926	200.7	11/16/19:217966
Sodium	120	1	mg/L		200.7	11/09/19:212926	200.7	11/09/19:217683
Total Cations	6.9		meq/L		200.7	11/09/19:212926	200.7	11/09/19:217683
Boron	0.2	0.1	mg/L		200.7	11/09/19:212926	200.7	11/16/19:217966
Copper	ND	10	ug/L	1000 ²	200.7	11/09/19:212926	200.7	11/09/19:217683
Iron	ND	30	ug/L	300^{2}	200.7	11/09/19:212926	200.7	11/09/19:217683
Manganese	30	10	ug/L	50^{2}	200.7	11/09/19:212926	200.7	11/09/19:217683
Zinc	360	20	ug/L		200.7	11/09/19:212926	200.7	11/09/19:217683
SAR	5.7				200.7	11/09/19:212926	200.7	11/09/19:217683
Total Alkalinity (as CaCO3)	260	10	mg/L		2320B	11/13/19:213104	2320B	11/13/19:217834
Hydroxide as OH	ND	10	mg/L		2320B	11/13/19:213104	2320B	11/13/19:217834
Carbonate as CO3	ND	10	mg/L		2320В	11/13/19:213104	2320B	11/13/19:217834
Bicarbonate as HCO3	320	10	mg/L		2320B	11/13/19;213104	2320B	11/13/19:217834
Sulfate	51.9	0.5	mg/L	500 ²	300.0	11/18/19:213363	300.0	11/18/19:218147
Chloride	24	1	mg/L	500 ²	300.0	11/18/19:213363	300.0	11/18/19:218147
Nitrate as NO3	ND	0.4	mg/L	45	300.0	11/18/19:213363	300.0	11/18/19:218147
Nitrite as N	ND	0.2	mg/L	1	300.0	11/18/19:213363	300.0	11/18/19:218147
Nitrate + Nitrite as N	ND	0.1	mg/L	10	300.0	11/18/19:213363	300,0	11/18/19:218147
Fluoride	0.6	0.1	mg/L	2	300.0	11/18/19:213363	300.0	11/18/19:218147
Total Anions	7.0		meq/L		2320B	11/13/19:213104	2320B	11/13/19;217834
pН	8.4		units		4500-H B	11/20/19:213446	4500HB	11/20/19:218255
Specific Conductance	695	1	umhos/cm	1600 ²	2510B	11/12/19:213033	2510B	11/12/19:217729
Total Dissolved Solids	420	20	mg/L	1000^{2}	2540CE	11/04/19:212683	2540C	11/05/19:217291
MBAS Screen	Negative	0.1	mg/L	0.5^{2}	5540C	11/06/19:213302	5540C	11/06/19:218028
Aggressiveness Index	12.6				4500-H B	11/20/19:213446	4500HB	11/20/19:218255
Langelier Index (20°C)	0.8				4500-H B	11/20/19:213446	4500HB	11/20/19:218255
Nitrate Nitrogen	ND	0.1	mg/L	10	300.0	11/18/19:213363	300.0	11/18/19:218147

ND=Non-Detected. PQL=Practical Quantitation Limit. * PQL adjusted for dilution.

MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

November 22, 2019

Abercrombie

Lab ID

:SP 1914842-002

Description

: 2125 Refugio Well Head

Drinking Water Interpretation

Summary: Your Water was acceptable for all items tested on this sample report. Details are presented below:

				M	CL
CONSTITUENT	RESULT	UNITS	MCL	LESS OR EQUAL	EXCEED
Inorganic - Primary					
Fluoride	0.6	mg/L	2	Pass	
Nitrate + Nitrite as N	ND	mg/L	10	Pass	
Nitrate as NO3	ND	mg/L	45	Pass	
Nitrate Nitrogen	ND	mg/L	10	Pass	ļ
Nitrite as N	ND	mg/L	1	Pass	
Inorganic - Secondary					
Chloride	24	mg/L	500	Pass	
Copper	ND	ug/L	1000	Pass	
Iron	ND	ug/L	300	Pass	
Manganese	30	ug/L	50	Pass	
MBAS (foaming agents)	Negative	mg/L	0.5	Pass	
Specific Conductance	695	umhos/cm	1600	Pass	
Sulfate	51.9	mg/L	500	Pass	
Total Dissolved Solids	420	mg/L	1000	Pass	
Other					
Copper	ND	ug/L	1300**	Pass	

ND=Non-Detected. ** California Title 22, Section 64672.3

November 22, 2019 **Abercrombie**

Lab ID

:SP 1914842-002

Description

: 2125 Refugio Well Head

Drinking Water Interpretation

MCL:

The maximum level at which a constituent may be present and be considered

acceptable for potability or aesthetics.

Primary:

Secondary:

Items listed as primary are regulated because of health concerns. If there is a failure for a primary constituent treatment is normally required.

Items listed as secondary are regulated because they may adversely affect the taste, odor or appearance of drinking water. They are not directly health related. If there is a failure for a secondary constituent on a small public water system it is best to consult your regulator to determine if treatment is required. A secondary constituent failure for a private water system does not require treatment.

However, the owner may wish to treat the water in order to improve the quality.

Treatment:

If your water requires treatment we suggest that you contact a qualified water treatment company. They are normally listed in the yellow pages under the following topics:

Water Purification & Filtration Equipment Water Softening & Conditioning Equipment Water Treatment Equipment November 22, 2019 Abercrombie

Lab ID

: SP 1914842

Customer

: 2-25624

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Boron	200.7		MS	mg/L	4,000	105 %	75-125	
		(CC 1983861-001)	MSD	mg/L	4.000	96.7 %	75-125	
			MSRPD	mg/L	800.0	8.1%	≤20.0	
	200.7	11/16/19:217966AC	CCV	ppm	5.000	103 %	90-110	
			CCB	ppm	1	-0.049	0.1	
			CCV	ppm	5.000	102 %	90-110	
			CCB	ppm		-0.037	0.1	
Calcium	200.7		MS	mg/L	12.00	76.1 %	75-125	
		(CC 1983861-001)	MSD	mg/L	12.00	71.5 %	75-125	435
			MSRPD	mg/L	800.0	1.2%	≤20.0	
	200.7	11/09/19:217683AC	CCV	ppm	25.00	96.8 %	90-110	
		1	CCB	ppm		0.04	1	
			CCV	ppm	25.00	98.6 %	90-110	
			CCB	ppm	<u> </u>	-0.05	1	
Copper	200.7	100 1005555	MS	ug/L	800.0	98.3 %	75-125	
		(CC 1983861-001)	MSD	ug/L	800.0	98.8 %	75-125	
		44400410	MSRPD	ug/L	800.0	0.5%	≤20.0	
	200.7	11/09/19:217683AC	CCV	ppm	1.000	103 %	90-110	
		1	ССВ	ppm		0.0002	0.01	
			CCV	ppm	1.000	106 %	90-110	
			ССВ	ppm	1000	-0.0036	0.01	
lron	200.7	(00 10000 (1 001)	MS	ug/L	4000	89.2 %	75-125	
		(CC 1983861-001)	MSD	ug/L	4000	89.3 %	75-125	
		11/00/10 015/00 10	MSRPD	ug/L	800.0	0.09%	≤20.0	
	200.7	11/09/19:217683AC	CCV	ppm	5.000	93.4 %	90-110	
]	CCB	ppm		-0.0195	0.03	
			CCV	ppm	5.000	95.1 %	90-110	
	2007		CCB	ppm	10.00	0.0123	0.03	
Magnesium	200.7	(CC 10919(1 001)	MS	mg/L	12.00	77.1 %	75-125	425
		(CC 1983861-001)	MSD MSRPD	mg/L	12.00 800.0	74.0 % 0.9%	75-125	435
į	200.7	11/09/19:217683AC		mg/L			≤20.0 90-110	
	200.7	11/09/19:21/083AC	CCA	ppm	25.00	96.0 % -0.003	90~110 1	
			CCV	ppm	25.00	97.8 %	90-110	
			CCB	ppm	23.00	-0.002	1 10	
Manganese	200.7		MS	ppm ug/L	800.0	91.0 %	75-125	
riidii Ean CoC	200.7	(CC 1983861-001)	MSD	ug/L ug/L	800.0	90.9 %	75-125	
		(00 1703001-001)	MSRPD	ug/L ug/L	800.0	0.1%	/3-123 ≤20.0	
	200.7	11/09/19;217683AC	CCV	ppm	1.000	96.4 %	90-110	
	200.7	111071171211003AC	CCB	ppm	1,000	0.0058	0.01	
		İ	CCV	ppm	1.000	98.7 %	90-110	
			ССВ	ppm	11000	0.0050	0.01	
Potassium	200.7		MS	mg/L	12.00	86.6 %	75-125	
	200.7	(CC 1983861-001)	MSD	mg/L	12.00	83.0 %	75-125	
		`========	MSRPD	mg/L	800.0	1.4%	≤20.0	
	200.7	11/16/19:217966AC	CCV	ppm	25.00	109 %	90-110	
	1 200		CCB	ppm		0.27	1	
			CCV	ppm	25.00	108 %	90-110	
			CCB	ppm		0.05	1	
Sodium	200.7		MS	mg/L	12.00	11.0 %	<¼	
*****		(CC 1983861-001)	MSD	mg/L	12.00	-7.8 %	<1/4	
		(====================================	MSRPD	mg/L	800.0	1.6%	≤20.0	
	200.7	11/09/19:217683AC	CCV	ppm	25.00	96.8 %	90-110	
	20017	11.07.17.217005710	CCB	ppm		-0.20	1	
	I	1	CCV	ppm	25.00	100 %	90-110	

November 22, 2019 **Abercrombie** Lab ID

: SP 1914842 : 2-25624

Customer

Quality Control - Inorganic

Constituent	Method	Date/ID	Турс	Units	Conc.	QC Data	DQO	Note
Metals								-
Sodium	200.7	11/09/19:217683AC	ССВ	ppm		-0.04	1	
Zinc	200.7		MS	ug/L	0,008	93.8 %	75-125	
		(CC 1983861-001)	MSD	ug/L	800.0	92.2 %	75-125	
	<u> </u>		MSRPD	ug/L	800.0	1.6%	≤20,0	
	200.7	11/09/19:217683AC	CCV	ppm	1,000	98.6 %	90-110	
			CCB CCV	ppm	1.000	0.0012 103 %	0.02 90-110	
			ССВ	ppm ppm	1.000	0.0009	0.02	
Wet Chem				F F			7,10	
Alkalinity (as CaCO3)	2320B	(SP 1914823-001)	Dup	mg/L		0.3%	10	
intermiting (as eaces)	2320B	11/13/19:217834AMM	CCV	mg/L	234.9	92.9 %	90-110	
			ccv	mg/L	234.9	100 %	90-110	
Bicarbonate	2320B	(SP 1914823-001)	Dup	mg/L		0.3%	10	
Carbonate	2320B	(SP 1914823-001)	Dup	mg/L		0.0	10	
Hydroxide	2320B	(SP 1914823-001)	Dup	mg/L		0.0	10	
Conductivity	2510B	11/12/19:217729STA	ICB	umhos/cm		0.1	1	
•			CCV	umhos/cm	1004	99.5 %	95-105	
			CCV	umhos/cm	1004	99.8 %	95-105	
E. C.	2510B	11/12/19:213033sta	Blank	umhos/cm		ND	<1	
	251005	(VI 1946448-001)	Dup	umhos/cm		0.3%	5	
Total Dissolved Solids (TFR)	2540CE	11/04/19:212683CTL	Blank	mg/L	993.0	ND 97.6 %	<20 90-110	
		(STK1956153-008)	LCS Dup	mg/L mg/L	993,0	1.0%	5	
		(STK1956153-009)	Dup	mg/L		0.7%	5	
Chloride	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<1	
emoride	500.0	11/10/17/2155055IVIK	LCS	mg/L	25.00	105 %	90-110	
			MS	mg/L	50.00	71.7 %	85-121	435
		(STK1956591-001)	MSD	mg/L	50.00	81.7%	85-121	435
			MSRPD	mg/L	10.00	3.8%	≤19	
			MS	mg/L	50.00	96.5 %	85-121	
		(STK1956683-002)	MSD	mg/L	50,00	96.5 %	85-121	
	200.0	14/16/10 016/14/19 49	MSRPD	mg/L	10.00	0.01%	≤19	
	300.0	11/18/19:218147JMR	CCB	mg/L	26.00	0.00 104 %	90-110	
			CCV	mg/L mg/L	25.00	0.05	90-110	
			CCV	mg/L	25,00	104 %	90-110	
Fluoride	300.0	11/18/19:213363JMR	Blank	mg/L	20,00	ND	1,0>	
· · · · · · · · · · · · · · · · · · ·	20010	1.75.77.2700000	LCS	mg/L	2.500	107 %	90-110	
			MS	mg/L	5.000	105 %	87-120	
		(STK1956591-001)	MSD	mg/L	5.000	105 %	87-120	
			MSRPD	mg/L	10.00	0.1%	≤16	
		(amy)	MS	mg/L	5.000	105 %	87-120	
		(STK1956683-002)	MSD	mg/L	5.000	105 %	87-120	
•	200.0	11/19/10.2191473.47	MSRPD	mg/L	10.00	0.4%	≤16	
	300.0	11/18/19:218147JMR	CCB CCV	mg/L mg/L	2.500	0,000 107 %	0.1 90-110	
			CCB	mg/L mg/L	۵.300	0.000	0.1	
			CCV	mg/L	2.500	107 %	90-110	
Nitrate	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<0.4	
			LCS	mg/L	20.00	108 %	90-110	
			MS	mg/L	40.00	106 %	85-119	
	İ	(STK1956591-001)	MSD	mg/L	40.00	106 %	85-119	
	İ		MSRPD	mg/L	10.00	0.1%	≤19	
	1		MS	mg/L	40.00	104 %	85-119	

November 22, 2019

Abercrombie

Lab ID

: SP 1914842

Customer

: 2-25624

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Cone.	QC Data	DQO	Note
Wet Chem								_
Nitrate	300.0	(STK1956683-002)	MSD	mg/L	40.00	104 %	85-119	
	55015	(51111755555 505)	MSRPD	mg/L	10.00	0.1%	≤19	
	300.0	11/18/19:218147JMR	CCB	mg/L		0.000	0.5	
	233,0		CCV	mg/L	20.00	107 %	90-110	
			CCB	mg/L	20.00	0.000	0.5	
			CCV	mg/L	20.00	107 %	90-110	
Nitrate + Nitrite as N	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<0.1	
Nitrate Nitrogen	300.0	11/18/19:213363JMR	Blank	ing/L		ND	<0.1	
Nitrite State of the state of t	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<0,5	*
			LCS	mg/L	15,00	108 %	90-110	
		1	MS	mg/L	30.00	104 %	74-126	
		(STK1956591-001)	MSD	mg/L	30.00	105 %	74-126	
			MSRPD	mg/L	10.00	0.7%	≤20	
		1	MS	mg/L	30.00	105 %	74-126	
		(STK1956683-002)	MSD	mg/L	30.00	105 %	74-126	
		(MSRPD	mg/L	10.00	0.2%	≤20	
	300.0	11/18/19:218147JMR	CCB	mg/L		0.000	0.5	
			CCV	mg/L	15.00	108 %	90-110	
			CCB	mg/L		0.000	0.5	
			CCV	mg/L	15.00	107 %	90-110	
Nitrite Nitrogen	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<0.2	
Sulfate	300.0	11/18/19:213363JMR	Blank	mg/L		ND	<0.5	
			LCS	mg/L	50.00	109 %	90-110	
			MS	mg/L	100.0	104 %	82-124	
		(STK1956591-001)	MSD	mg/L	100.0	105 %	82-124	
		<u> </u>	MSRPD	mg/L	10.00	0.2%	≤23	
			MS	mg/L	100.0	101 %	82-124	
		(STK1956683-002)	MSD	mg/L	100.0	101 %	82-124	
		l `	MSRPD	mg/L	10.00	0.04%	≤23	
	300.0	11/18/19:218147JMR	CCB	mg/L		0.000	0.5	
			ccv	mg/L	50.00	107 %	90-110	
			CCB	mg/L		0.000	0.5	
			CCV	mg/L	50.00	107 %	90-110	
эн	4500-H B	(VI 1946186-001)	Dup	units		0.2%	4.80	***************************************
	4500HB	11/20/19:218255AMM	CCV	units	8.000	100 %	95-105	
			ccv	units	8.000	100 %	95-105	
MBAS	5540C	11/06/19:218028jba	CCB	mg/L		0.000	0.1	
			CCV	mg/L	0.1000	100 %	99-101	
MBAS Screen	5540C		MS	mg/L	0.1000	100 %	90-110	
	1	(SP 1914842-002)	MSD	mg/L	0.1000	100 %	90-110	
		[MSRPD	mg/L	0.1000	0.0	≤0.1	

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. LCS

: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery.

: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyte. The recoveries MSD are an indication of how that sample matrix affects analyte recovery.

: Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an Dup

indication of precision for the preparation and analysis.

: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD

and analysis.

November 22, 2019 **Abercrombie**

Lab ID

: SP 1914842

Customer

: 2-25624

Quality Control - Inorganic

Definition	
ND <¼	: Non-detect - Result was below the DQO listed for the analyte.
<1/4	: High Sample Background - Spike concentration was less than one forth of the sample concentration.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery,

Analytical Chemists

Invoice # 914842A

Remit To: FGL Environmental 853 Corporation St Santa Paula, CA 93060 **INVOICE**

Abercrombie 2125 Refugio Rd Goleta, CA 913117

Account #	2025624
Date Billed 11/25/2019	Amount Due \$241.00
Date Due 12/25/2019	Amount Paid

To ensure that your account is properly credited, please return top portion with payment

Keep bottom portion for your records.

INVOICE

Customer	Account #	Date Sampled	Lab Number
Abercrombie	2025624	10/31/2019	SP 1914842
Project	Invoice #	Date Billed	Amount Due
Tajiguas Ranch	914842A	11/25/2019	\$241.00
PO# / Check Number	Date Paid	Date Due 12/25/2019	Amount Paid

Description of Work	Quantity	Rate	Extended
Bacti Analysis			
Coliform-Quanti Tray	2	33.00	66.00
Inorganic Analysis			
General Mineral	1	175.00	175.00
Minimum Charge			\$50.00
			:
	A	mount Due	\$241.00

(KDM-L4)

FGL Environmental
Revision Date: 10/09/14

Doc ID: 2D0900157_SOP_17.DOC

Page: 1 of 1

Condition Upon Receipt (Attach to COC)

Sample Receipt at S	SP:							
1. Number of ice ches	sts/packages received:	OTC						
2. Shipper tracking nu	umbers ———							
3. Were samples rece Temps:	eived in a chilled condition?	ROI	/_23C	/	/	/	/	/
	TR) bact samples: A sample tha unless the time since sample co						whether ic	ed or not,
5. Do the number of b COC?	ottles received agree with the	Yes	No	N/A				
6. Verify sample date	, time, sampler	Yes	No	N/A				
7. Were the samples bottles, leaks, etc.)	received intact? (i.e. no broken	Yes	No					
8. Were sample custo	ody seals intact?	Yes	No	N/A]			
Sample Verification,	, Labeling and Distribution:							
1. Were all requested acceptable?	analyses understood and	Yes	No					
2. Did bottle labels co	rrespond with the client's ID's?	Yes	No					
properly preserved	quiring sample preservation ? & Grease, VOA and CrVI verified in lab]	Yes	No	N/A] FGL			
4. VOAs checked for	Headspace?	Yes	No	N/A]			
5. Were all analyses v receipt?	within holding times at time of	Yes	No					
6. Have rush or project accepted?	ct due dates been checked and	Yes	No	N/A]			
Include a copy of the	COC for lab delivery. (Bacti. Ino	rganics a	and Ra	dio)				
· •	in and Verification completed by	-	Reviewe Approve	d and C	ynthia T	Casarez	Title: Samp	ned by Cynthia T Casarez le Receiving /2019-12:11:32
Discrepency Docum Any items above which	nentation: ch are "No" or do not meet speci	fications	(i.e. te	mps) mu	ıst be res	olved.		
1. Person Contacted:	Stewart	Pho	ne Nun	nber:				
Initiated By:	Cynthia Casarez	Date	ə:		2019-10)-31		
Problem:	Lab pH past hold							
Resolution:	Okay to proceed							
2. Person Contacted:		Ph	none Nu	umber:				
Initiated By:		Da	ate:	-				
Problem:								
Resolution:						/000	IECO 4)	
						•	!5624)	
						Apero	rombie	

SP 1914842 CTC-11/04/2019-12:11:32

Relingified by and subject to the control of the co	The second to the second was to the second t	ation (if different from above) Fax:Fax:Fax:Fax:Frequency: OtherWonthly WeeklyFrequency: Other	Client: 5000000000000000000000000000000000000
Date: Date: Time: Received by: Time: Received by: Received by:	1200 1200 1 DAM HOWSE , Picaus	Type of Sampling: Composite (C) or Grab (G) Number of Containers Type of Containers: (G) Glass (P) Plastic (V) VOA (MT) Metal Tube (P) Potable (NP) Non-Potable (SW) Surface Water (MW) Monitoring Well (GW) Ground Water (TB) Travel Blank (AgW) Ag Water (WW) Wastewater (DW) Drinking Water (S) Soil (SLG) Sludge (SLD) Solid (O) Oil BacT: (Sys) System (SRC) Source (W) Waste BacT: Routine (ROUT) Repeat (RPT) Other (OTH) Replace (RPL) (LT) Leaf Tissue (PET) Petiole Tissue (PRD) Produce Preservative: (1) NaOH + ZnAc, (2) NaOH, (3) HCL (4) H ₂ SO ₄ , (5) HNO ₃ , (6) Na ₂ S ₂ O ₃ , (7) Other	Sampler (s): Comp Sampler Set up Date: Time: Mileage: Shipping Charge: Pickup Charge:
Date: Time:		ANALYSES REQUESTED CHOOL CHO	Rush Analysis (surcharge will apply): S Day

Corporate Offices & Laboratory
853, Corporation Street
Santa Paula, CA 93060
TEL: (805) 932-2000
FAX: (805) 825-4177

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209) 942-0182 FAX (209) 642-0423

Office & Laboratory 563 East Lindo Avenue Chico, CA 95926 TEL: (530) 343-5818 FAX: (530) 343-3807

Office & Laboratory
3442 Empresa Drive, Suite D
San Luis Obispo, CA 93401
TEL: (805) 783-2940
FAX (805) 783-29412

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559) 734-9473 FAX: 1569) 734-15115